Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 31(11): 1361-1403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37013427

RESUMO

The purinergic P2X7 receptor (P2X7R), an ATP-gated non-selective cation channel, has emerged as a gatekeeper of inflammation that controls the release of proinflammatory cytokines. As a key player in initiating the inflammatory signaling cascade, the P2X7 receptor is currently under intense scrutiny as a target for the treatment of different pathologies, including chronic inflammatory disorders (rheumatoid arthritis and osteoarthritis), chronic neuropathic pain, mood disorders (depression and anxiety), neurodegenerative diseases, ischemia, cancer (leukemia), and many others. For these reasons, pharmaceutical companies have invested in discovering compounds able to modulate the P2X7R and filed many patent applications. This review article presents an account of P2X7R structure, function, and tissue distribution, emphasizing its role in inflammation. Next, we illustrate the different chemical classes of non-competitive P2X7R antagonists reported by highlighting their properties and qualities as clinical candidates for treating inflammatory disorders and neurodegenerative diseases. We also discuss the efforts to develop effective Positron Emission Tomography (PET) radioligands to progress the understanding of the pathomechanisms of neurodegenerative disorders, to provide evidence of drug-target engagement, and to assist clinical dose selection for novel drug therapies.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Inflamação/tratamento farmacológico , Inflamação/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Receptores Purinérgicos P2X7/uso terapêutico
2.
Pharmacol Rep ; 75(2): 465-473, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840824

RESUMO

BACKGROUND: G protein-coupled receptors (GPCRs) transduce external stimuli into the cell by G proteins via an allosteric mechanism. Agonist binding to the receptor stimulates GDP/GTP exchange within the heterotrimeric G protein complex, whereas recent structures of GPCR-G protein complexes revealed that the H5, S1 and S2 domains of Gα are involved in binding the active receptor, earlier studies showed that a short peptide analog derived from the C-terminus (H5) of the G protein transducin (Gt) is sufficient to stabilize rhodopsin in an active form. METHODS: We have used Molecular Dynamics simulations along with biological evaluation by means of radio-ligand binding assay to study the interactions between Gαi-derived peptide (G-peptide) and the µ-opioid receptor (µOR). RESULTS: Here, we show that a Gαi-derived peptide of 12 amino acids binds the µ-opioid receptor and acts as an allosteric modulator. The Gαi-derived peptide increases µOR affinity for its agonist morphine in a dose-dependent way. CONCLUSIONS: These results indicate that the GPCR-Gα peptide interaction observed so far for only rhodopsin can be extrapolated to µOR. In addition, we show that the C-terminal peptide of the Gαi subunit is sufficient to stabilize the active conformation of the receptor. Our approach opens the possibility to investigate the GPCR-G protein interface with peptide modification.


Assuntos
Receptores Opioides , Rodopsina , Rodopsina/química , Rodopsina/metabolismo , Receptores Opioides/metabolismo , Peptídeos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transducina/química , Transducina/metabolismo , Ligação Proteica
3.
J Med Chem ; 64(18): 13279-13298, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34467765

RESUMO

In line with recent clinical trials demonstrating that ondansetron, a 5-HT3 receptor (5-HT3R) antagonist, ameliorates cognitive deficits of schizophrenia and the known procognitive effects of 5-HT6 receptor (5-HT6R) antagonists, we applied the hybridization strategy to design dual-acting 5-HT3/5-HT6R antagonists. We identified the first-in-class compound FPPQ, which behaves as a 5-HT3R antagonist and a neutral antagonist 5-HT6R of the Gs pathway. FPPQ shows selectivity over 87 targets and decent brain penetration. Likewise, FPPQ inhibits phencyclidine (PCP)-induced hyperactivity and displays procognitive properties in the novel object recognition task. In contrast to FPPQ, neither 5-HT6R inverse agonist SB399885 nor neutral 5-HT6R antagonist CPPQ reversed (PCP)-induced hyperactivity. Thus, combination of 5-HT3R antagonism and 5-HT6R antagonism, exemplified by FPPQ, contributes to alleviating the positive-like symptoms. Present findings reveal critical structural features useful in a rational polypharmacological approach to target 5-HT3/5-HT6 receptors and encourage further studies on dual-acting 5-HT3/5-HT6R antagonists for the treatment of psychiatric disorders.


Assuntos
Antipsicóticos/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Nootrópicos/uso terapêutico , Receptores 5-HT3 de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/uso terapêutico , Animais , Antipsicóticos/síntese química , Antipsicóticos/metabolismo , Antipsicóticos/farmacocinética , Combinação de Medicamentos , Cobaias , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Nootrópicos/síntese química , Nootrópicos/metabolismo , Nootrópicos/farmacocinética , Ondansetron/uso terapêutico , Piperazinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT3 de Serotonina/síntese química , Antagonistas do Receptor 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/uso terapêutico
4.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361754

RESUMO

A series of N-skatyltryptamines was synthesized and their affinities for serotonin and dopamine receptors were determined. Compounds exhibited activity toward 5-HT1A, 5-HT2A, 5-HT6, and D2 receptors. Substitution patterns resulting in affinity/activity switches were identified and studied using homology modeling. Chosen hits were screened to determine their metabolism, permeability, hepatotoxicity, and CYP inhibition. Several D2 receptor antagonists with additional 5-HT6R antagonist and agonist properties were identified. The former combination resembled known antipsychotic agents, while the latter was particularly interesting due to the fact that it has not been studied before. Selective 5-HT6R antagonists have been shown previously to produce procognitive and promnesic effects in several rodent models. Administration of 5-HT6R agonists was more ambiguous-in naive animals, it did not alter memory or produce slight amnesic effects, while in rodent models of memory impairment, they ameliorated the condition just like antagonists. Using the identified hit compounds 15 and 18, we tried to sort out the difference between ligands exhibiting the D2R antagonist function combined with 5-HT6R agonism, and mixed D2/5-HT6R antagonists in murine models of psychosis.


Assuntos
Antipsicóticos/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Indóis/farmacologia , Nootrópicos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Triptaminas/farmacologia , Animais , Antipsicóticos/síntese química , Família 2 do Citocromo P450/metabolismo , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/síntese química , Células Hep G2 , Humanos , Indóis/síntese química , Ligantes , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Nootrópicos/síntese química , Ligação Proteica , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/fisiopatologia , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Relação Estrutura-Atividade , Triptaminas/síntese química
5.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281292

RESUMO

Cancer is one of the deadliest illness globally. Searching for new solutions in cancer treatments is essential because commonly used mixed, targeted and personalized therapies are sometimes not sufficient or are too expensive for common patients. Sugar fatty acid esters (SFAEs) are already well-known as promising candidates for an alternative medical tool. The manuscript brings the reader closer to methods of obtaining various SFAEs using combined biological, chemical and enzymatic methods. It presents how modification of SFAE's hydrophobic chains can influence their cytotoxicity against human skin melanoma and prostate cancer cell lines. The compound's cytotoxicity was determined by an MTT assay, which followed an assessment of SFAEs' potential metastatic properties in concentrations below IC50 values. Despite relatively high IC50 values (63.3-1737.6 µM) of the newly synthesized SFAE, they can compete with other sugar esters already described in the literature. The chosen bioactives caused low polymerization of microtubules and the depolymerization of actin filaments in nontoxic levels, which suggest an apoptotic rather than metastatic process. Altogether, cancer cells showed no propensity for metastasis after treating them with SFAE. They confirmed that lactose-based compounds seem the most promising surfactants among tested sugar esters. This manuscript creates a benchmark for creation of novel anticancer agents based on 3-hydroxylated fatty acids of bacterial origin.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Açúcares/química , Açúcares/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Ésteres/farmacologia , Feminino , Humanos , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/ultraestrutura , Masculino , Relação Estrutura-Atividade
6.
Eur J Med Chem ; 208: 112765, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949963

RESUMO

The complex etiology of Alzheimer's disease has initiated a quest for multi-target ligands to address the multifactorial causes of this neurodegenerative disorder. In this context, we designed dual-acting 5-HT6 receptor (5-HT6R) antagonists/MAO-B inhibitors using pharmacophore hybridization strategy. Our approach involved linking priviliged scaffolds of 5-HT6R with aryloxy fragments derived from reversible and irreversible MAO-B inhibitors. The study identified compound 48 that acts as an inverse agonist of 5-HT6R at Gs signaling and an irreversible MAO-B inhibitor. Compound 48 showed moderate metabolic stability in rat microsomal assay, artificial membrane permeability, no hepatotoxicity, and it was well distributed to the brain. Additionally, 48 showed glioprotective properties in a model of cultured astrocytes using 6-OHDA as the cytotoxic agent. Finally, compound 48 (MED = 1 mg/kg, p.o.) fully reversed memory deficits in the NOR task induced by scopolamine in rats. A better understanding of effects exerted by dual-acting 5-HT6R/MAO-B modulators may impact the future development of neurodegenerative-directed treatment strategies.


Assuntos
Alcinos/farmacologia , Indóis/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Receptores de Serotonina/metabolismo , Alcinos/síntese química , Alcinos/farmacocinética , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Agonismo Inverso de Drogas , Células HEK293 , Humanos , Indóis/síntese química , Indóis/farmacocinética , Masculino , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/farmacocinética , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacocinética , Nootrópicos/síntese química , Nootrópicos/farmacocinética , Ratos Sprague-Dawley , Ratos Wistar , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/farmacocinética , Antagonistas da Serotonina/farmacologia , Relação Estrutura-Atividade
7.
Eur J Med Chem ; 185: 111857, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734022

RESUMO

A virtual screening campaign aimed at finding structurally new compounds active at 5-HT6R provided a set of candidates. Among those, one structure, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (1, 5-HT6R Ki = 91 nM), was selected as a hit for further optimization. As expected, the chemical scaffold of selected compound was significantly different from all the serotonin receptor ligands published to date. Synthetic efforts, supported by molecular modelling, provided 43 compounds representing different substitution patterns. The derivative 42, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (5-HT6R Ki = 25, 5-HT2AR Ki = 32 nM), was selected as a lead and showed a good brain/plasma concentration profile, and it reversed phencyclidine-induced memory impairment. Considering the unique activity profile, the obtained series might be a good starting point for the development of a novel antipsychotic or antidepressant with pro-cognitive properties.


Assuntos
Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Cognição/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Triptaminas/farmacologia , Animais , Antidepressivos/síntese química , Antidepressivos/química , Antipsicóticos/síntese química , Antipsicóticos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Ligantes , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Triptaminas/síntese química , Triptaminas/química , Células Tumorais Cultivadas
8.
Eur J Med Chem ; 179: 1-15, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229883

RESUMO

A new strategy in the design of aminergic GPCR ligands is proposed - the use of aromatic, heterocyclic basic moieties in place of the evergreen piperazine or alicyclic and aliphatic amines. This hypothesis has been tested using a benchmark series of 5-HT6R antagonists obtained by coupling variously substituted 2-aminoimidazole moieties to the well established 1-benzenesulfonyl-1H-indoles, which served as the ligands cores. The crystallographic studies revealed that upon protonation, the 2-aminoimidazole fragment triggers a resonance driven conformational change leading to a form of higher affinity. This molecular switch may be responsible for the observed differences in 5-HT6R activity of the studied chemotypes with different amine-like fragments. Considering the multiple functionalization sites of the embedded guanidine fragment, diverse libraries were constructed, and the relationships between the structure and activity, metabolic stability, and solubility were established. Compounds from the N-(1H-imidazol-2-yl)acylamide chemotype (10a-z) exhibited high affinity for 5-HT6R and very high selectivity over 5-HT1A, 5-HT2A, 5-HT7 and D2 receptors (negligible binding), which was attributed to their very weak basicity. The lead compound in the series 4-methyl-5-[1-(naphthalene-1-sulfonyl)-1H-indol-3-yl]-1H-imidazol-2-amine (9i) was shown to reverse the cognitive impairment caused by the administration of scopolamine in rats indicating procognitive potential.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Desenho de Fármacos , Imidazóis/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Animais , Células Cultivadas , Disfunção Cognitiva/induzido quimicamente , Relação Dose-Resposta a Droga , Células HEK293 , Células Hep G2 , Humanos , Imidazóis/síntese química , Imidazóis/química , Masculino , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Escopolamina/administração & dosagem , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/química , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347827

RESUMO

The cytotoxic activity of several serotonin transporter (SERT) inhibitors and subtype of serotonin receptor 1A (5-HT1A receptor) ligands have been examined in androgen-insensitive human PC-3 prostate and neuroblastoma SH-SY5Y cancer cells. Almost all of the studied compounds (except 5-HT1A receptor agonist (2R)-(+)-8-Hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT)) exhibited absolute cytotoxic activity against the examined cancer cells. The compound 4-Fluoro-N-[2-[4-(7-methoxy-1-naphthalenyl)-1-piperazinyl]ethyl]benzamide hydrochloride (S14506) that showed highest activity against neuroblastoma tumors was the 5-HT1A receptor agonist (although not alike other 5-HT1A receptor agonists). On the other hand, the compound 6-nitro-2-(4-undecylpiperazin-1-yl)quinoline hydrochloride (AZ07) that had the highest activity against PC-3 prostate cancer cells was a compound exhibiting antagonistic activity against the 5-HT1A receptor. Thus, compounds of oncotoxic properties S14506 and AZ07 should be evaluated further for their potential use in the prevention and treatment of cancer. Most of the 15 compounds tested exhibited either agonistic or antagonistic activity for both the cyclic adenosine monophosphate (cAMP) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathways in human embryonic kidney 293 (HEK293) cells that overexpress the 5HT1AR gene. However, compounds paroxetine, N-Ac-paroxetine and 2-[4-(cyclobutylmethyl)piperazin-1-yl]-6-nitroquinoline hydrochloride (AB22) simultaneously exhibited antagonistic activity on the cAMP pathway and agonistic activity on the ERK1/2 pathway. Fluoxetine relative to compound AZ07 had almost three times lower cytotoxic activity against PC-3 prostate cancer cells. However, the proapoptotic activity of fluoxetine compared to compound AZ07 is almost two times higher which would suggest that the cytotoxic activity of both compounds may be dependent on different cell death mechanisms. Compound S14506 was found to be an antagonist of the serine-threonine protein kinase B (Akt) pathway. Prosurvival Akt activity may be reversed by Akt antagonists. Therefore, the antagonistic activity of S14506 on the Akt pathway may evoke caspase-3 expression and cytotoxicity. It appears that one should not expect a straightforward relationship between the activation of particular serotonergic pathways by selective serotonin reuptake inhibitors (SSRIs) and 5-HT1A receptor ligands and their cytotoxic or cytoprotective activity. Additionally, nuclear transcription factor κB (NF-κB), which may be involved in 5-HT-dependent biochemical pathways by coordinating different subunits in the formation of a dimer, may regulate the transcription of different transduction pathways. Therefore, it can be suggested that the mechanism of the cytotoxic activity of certain compounds (serotonergic against nonserotonergic) may depend on the compound and cancer type being examined. Docking studies showed that S14506, buspirone and spiperone bind in similar ways in the 5-HT1A receptor model and interacted with similar 5-HT1A receptor residues. S14506 and spiperone were found to be located closer to both phenylalanines in TM6 than buspirone, thus exhibiting more antagonist binding modes.


Assuntos
Carcinogênese/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Células 3T3 , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/química , Antagonistas do Receptor 5-HT1 de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
10.
Expert Opin Ther Pat ; 28(9): 679-689, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30124346

RESUMO

INTRODUCTION: 5-HT1AR was one of the first discovered serotonin receptors and is one of the most thoroughly studied. Dysfunctions associated with 5-HT1AR neurotransmission are linked to several psychiatric disorders, including anxiety, depression, and movement disorders. AREAS COVERED: The current review covers patent literature published between January 2012 and May 2018. Queries were performed on Espacenet, SciFinder, clinicaltrials.gov, pharmacodia.com, and the websites of pharmaceutical companies. EXPERT OPINION: Several novel therapeutic applications have been proposed for 5-HT1AR ligands, i.e. prostate cancer treatment, gastrointestinal and cardiopulmonary disorders, facilitation of urination and defecation, and L-DOPA-induced dyskinesia. Interestingly, no patent application has been filed by big pharma companies, while numerous researches are being conducted in smaller companies and academia.


Assuntos
Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Desenho de Fármacos , Humanos , Ligantes , Patentes como Assunto , Receptor 5-HT1A de Serotonina/metabolismo
11.
Bioorg Med Chem ; 26(14): 4310-4319, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30049585

RESUMO

We report herein the synthesis and biological evaluation of a new series of 2,4,6-trisubstituted 1,3,5-triazines as reversible inhibitors of human cysteine cathepsins. The desired products bearing morpholine and N-Boc piperidine, respectively, were obtained in three to four steps from commercially available trichlorotriazine. Seventeen hitherto unknown compounds were evaluated in vitro against various cathepsins for their inhibitory properties. Among them, compound 7c (4-(morpholin-4-yl)-6-[4-(trifluoromethoxy)anilino]-1,3,5-triazine-2-carbonitrile) was identified as the most potent and selective inhibitor of cathepsin S (Ki  =  2  ±â€¯â€¯0.3 nM). Also 7c impaired the autocatalytic maturation of procathepsin S. Molecular docking studies support that 7c bound within the active site of cathepsin S, by interacting with Gly23, Cys25 and Trp26 (S1 subsite), with Asn67, Gly69 and Phe70 (S2 subsite) and with Gln19 (S1' pocket).


Assuntos
Catepsinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Triazinas/farmacologia , Catepsinas/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Cinética , Conformação Molecular , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química
12.
Eur J Med Chem ; 151: 797-814, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29679900

RESUMO

Identifying desired interactions with a target receptor is often the first step when designing new active compounds. However, attention should also be focused on contacts with other proteins that result in either selective or polypharmacological compounds. Here, the search for the structural determinants of selectivity between selected serotonin receptor subtypes was carried out. Special attention was focused on 5-HT7R and the cross-interactions between its ligands and the 5-HT1AR, 5-HT1BR, 5-HT2AR, 5-HT2BR, and 5-HT6R subtypes. Selective and non-selective compounds for each pair of 5-HT7/5-HTx receptors were docked to the respective 5-HTR homology models and 5-HT1B/5-HT2BR crystal structures. The contacts present in the ligand-receptor complexes obtained by docking were characterized by the structural interaction fingerprint and statistically analyzed in terms of their frequency. The results allowed for the identification of amino acids that discriminate between selective and non-selective compounds for each 5-HT7/5-HTx receptor pair, which was further compared with available mutagenesis data. Interaction pattern characteristics for compounds with particular activity profiles can constitute the basis for the coherent selectivity theory within a considered set of proteins, supporting the ongoing development of new ligands targeting these receptors. The in silico results were used to analyze prospective virtual screening results towards the 5-HT7 receptor in which compounds of different chemotypes to known 5-HT7R ligands, with micromolar level activities were identified. The findings in this study not only confirm the legitimacy of the approach but also constitute a great starting point for further studies on 5-HT7R ligands selectivity.


Assuntos
Descoberta de Drogas , Receptores de Serotonina/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Polifarmacologia , Receptores de Serotonina/química
13.
Eur J Med Chem ; 145: 790-804, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29407591

RESUMO

Currently used antipsychotics are characterized by multireceptor mode of action. While antagonism of dopamine D2 receptors is responsible for the alleviation of "positive" symptoms of schizophrenia and the effects at other, particularly serotonergic receptors are necessary for their additional therapeutic effects, there is no consensus regarding an "ideal" target engagement. Here, a detailed SAR analysis in a series of 45 novel azinesulfonamides of cyclic amine derivatives, involving the aryl-piperazine/piperidine pharmacophore, central alicyclic amine and azinesulfonamide groups has led to the selection of (S)-4-((2-(2-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)ethyl)pyrrolidin-1-yl)sulfonyl)isoquinoline (62). The polypharmacology profile of 62, characterized by partial 5-HT1AR agonism, 5-HT2A/5-HT7/D2/D3R antagonism, and blockade of SERT, reduced the "positive"-like, and "negative"-like symptoms of psychoses. Compound 62 produced no catalepsy, demonstrated a low hyperprolactinemia liability and displayed pro-cognitive effects in the novel object recognition task and attentional set-shifting test. While association of in vitro features with the promising in vivo profile of 62 is still not fully established, its clinical efficacy should be verified in further stages of development.


Assuntos
Aminas/farmacologia , Antipsicóticos/farmacologia , Cognição/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Sulfonamidas/farmacologia , Aminas/síntese química , Aminas/química , Animais , Antipsicóticos/síntese química , Antipsicóticos/química , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Humanos , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
14.
Mol Neurobiol ; 55(4): 2897-2910, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28455702

RESUMO

The allosteric regulation of G protein-coupled receptors (GPCRs) is a well-known phenomenon, but there are only a few examples of allosteric modulation within the metabotropic serotonergic receptor family. Recently, we described zinc non-competitive interactions toward agonist binding at serotonin 5-HT1A receptors, in which biphasic effects, involving potentiation at sub-micromolar concentrations (10 µM) and inhibition at sub-millimolar concentrations (500 µM) of Zn2+ in radioligand binding assays, were consistent with both the agonist and antagonist-like effects of zinc ions observed in in vivo studies. Here, we showed new data demonstrating zinc allosteric inhibition of both agonist and antagonist binding at human recombinant 5-HT7 receptors stably expressed in HEK293 cells as observed by radioligand binding studies as well as zinc neutral antagonism displayed by the concentration of 10 µM in the functional LANCE assay. The allosteric nature of the effect of Zn on 5-HT7 receptors was confirmed (1) in saturation studies in which zinc inhibited the binding of potent orthosteric 5-HT7 receptor radioligands, the agonist [3H]5-CT, and the two antagonists [3H]SB-269970 and [3H]mesulergine, showing ceiling effect and differences in the magnitude of negative cooperativity (α = 0.15, 0.06, and 0.25, respectively); (2) in competition experiments in which 500 µM of zinc inhibited all radioligand displacements by non-labeled orthosteric ligands (5-CT, SB-269970, and clozapine), and the most significant reduction in affinity was observed for the 5-CT agonist (4.9-16.7-fold) compared with both antagonists (1.4-3.9-fold); and (3) in kinetic experiments in which 500 µM zinc increased the dissociation rate constants for [3H]5-CT and [3H]mesulergine but not for [3H]SB-269970. Additionally, in the functional LANCE test using the constitutively active HEK293 cell line expressing the 5-HT7 receptor, 10 µM zinc had features of neutral antagonism and increased the EC50 value of the 5-CT agonist by a factor of 3.2. Overall, these results showed that zinc can act as a negative allosteric inhibitor of 5-HT7 receptors. Given that the inhibiting effects of low concentrations of zinc in the functional assay represent the most likely direction of zinc activity under physiological conditions, among numerous zinc-regulated proteins, the 5-HT7 receptor can be considered a serotonergic target for zinc modulation in the CNS.


Assuntos
Receptores de Serotonina/metabolismo , Zinco/farmacologia , Regulação Alostérica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Ergolinas/farmacologia , Células HEK293 , Humanos , Íons , Cinética , Ligantes , Fenóis , Sulfonamidas
15.
Chem Biol Drug Des ; 90(6): 1295-1306, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28886235

RESUMO

Since the year 1993, when 5-HT7 receptor (5-HT7 R) was discovered, there is no selective 5-HT7 R ligand introduced to the pharmaceutical market. One out of the main reasons disqualifying the 5-HT7 R ligands is weak drugability properties, including metabolic instability or low permeability. This study is focused on the search of a lead compound by "drug-likeness" estimation of the first series of selective and potent 5-HT7 R ligands among 5-(4-fluorophenyl)-3-(2-hydroxy-3-(4-aryl-piperazin-1-yl)propyl)-5-methylimidazolidine-2,4-dione derivatives (11-16). The most important drugability parameters, i.e., permeability, metabolic stability, and safety, have been evaluated. The main metabolic pathways were determined. The forced swim test (FST) in mice was performed as a primary in vivo assay for compound 13 and the reference 2. The experiments showed promising drug-like properties for all ligands, with special attention to the benzhydryl (diphenylmethyl) derivative 13. The studies have also indicated in vivo activity of the compound 13 that was observed as a significant and specific antidepressant-like activity in the FST. Taking into account the beneficial properties of 13, i.e., good drug-like parameters, the significant antagonistic action, high selectivity to 5-HT7 R, and its in vivo antidepressant-like activity, the compound should be considered as a new lead in the search for drugs acting on CNS via 5-HT7 receptor.


Assuntos
Antidepressivos/química , Hidantoínas/química , Receptores de Serotonina/metabolismo , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Células HEK293 , Células Hep G2 , Humanos , Hidantoínas/metabolismo , Hidantoínas/farmacologia , Cinética , Ligantes , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Microssomos Hepáticos/metabolismo , Permeabilidade/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/química , Relação Estrutura-Atividade
16.
Sci Rep ; 7(1): 1444, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473721

RESUMO

A series of 5-aryl-1-alkylimidazole derivatives was synthesized using the van Leusen multicomponent reaction. The chemotype is the first example of low-basicity scaffolds exhibiting high affinity for 5-HT7 receptor together with agonist function. The chosen lead compounds 3-(1-ethyl-1H-imidazol-5-yl)-5-iodo-1H-indole (AGH-107, 1o, K i 5-HT7 = 6 nM, EC50 = 19 nM, 176-fold selectivity over 5-HT1AR) and 1e (5-methoxy analogue, K i 5-HT7 = 30 nM, EC50 = 60 nM) exhibited high selectivity over related CNS targets, high metabolic stability and low toxicity in HEK-293 and HepG2 cell cultures. A rapid absorption to the blood, high blood-brain barrier permeation and a very high peak concentration in the brain (Cmax = 2723 ng/g) were found for 1o after i.p. (5 mg/kg) administration in mice. The compound was found active in novel object recognition test in mice, at 0.5, 1 and 5 mg/kg. Docking to 5-HT7R homology models indicated a plausible binding mode which explain the unusually high selectivity over the related CNS targets. Halogen bond formation between the most potent derivatives and the receptor is consistent with both the docking results and SAR. 5-Chlorine, bromine and iodine substitution resulted in a 13, 27 and 89-fold increase in binding affinities, respectively, and in enhanced 5-HT1AR selectivity.


Assuntos
Imidazóis/síntese química , Imidazóis/farmacologia , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/síntese química , Agonistas do Receptor de Serotonina/farmacologia , Barreira Hematoencefálica/metabolismo , Química Encefálica , Desenho de Fármacos , Células HEK293 , Células Hep G2 , Humanos , Modelos Moleculares , Ligação Proteica , Reconhecimento Psicológico/efeitos dos fármacos , Relação Estrutura-Atividade
17.
Pharmacol Rep ; 69(3): 469-478, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28324844

RESUMO

Serotonin exhibits multiple non-neural functions involved in essential hypertension, early embryogenesis, follicle maturation and behaviour. The growth stimulatory effects of the neurotransmitter have been described for a variety of cell types. 5-HT was found to induce migration of the human prostate cancer cell lines - PC-3 and Du145 - and several 5-HT1A antagonists and serotonin reuptake inhibitors were reported to inhibit the growth of different tumour cell lines in vitro. Recent studies suggest that neurogenesis is involved in the action of antidepressants and an involvement of antidepressants in adult hippocampal neurogenesis has been demonstrated. Antidepressants also exhibit neuroprotective activity, which could be connected to their antidepressant activity. However, it has been reported that certain antidepressants may induce apoptosis in some cancer cell lines. In the present paper the neuroprotective and proapoptotic activities of serotonergic antidepressants (SSRIs and TCAs), as well as 5-HT1A receptor ligands are summarized and discussed based on biochemical transduction pathways associated with these activities.


Assuntos
Antidepressivos/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Humanos , Ligantes , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
18.
Eur J Med Chem ; 121: 12-20, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27214508

RESUMO

The synthesis and evaluation against various cysteine cathepsins with endopeptidase activity, of two new families of hitherto unknown 1,3,5-triazines, substituted by a nitrile function and either a cyclohexylamine moiety (5-like) or a piperazine moiety (9-like) are described. The structure-activity relationship was discussed; from 16 synthesized novel compounds, 9h was the most active and selectively inhibitor of Cat K (IC50 = 28 nM) and Cat S (IC50 = 23 nM). Molecular docking of 9h to X-ray crystal structure of cathepsins K and S confirmed a common binding mode with a crucial covalent bond with Cys25. We observed for 9h that p-trifluorophenyl group is located in S2 pocket and possess hydrophobic interactions with Tyr67 and Met68. Triazine and piperazine moieties are located in S'1 pocket and interact with Gly23, Cys63, Gly64 and Gly65. Altogether, these results indicate that the new analogs can make them effective agents against some viruses for which the glycoprotein cleavage is mediated by an array of proteases.


Assuntos
Antivirais/química , Catepsina K/antagonistas & inibidores , Catepsinas/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Triazinas/síntese química , Sítios de Ligação , Cristalografia por Raios X , Cisteína Endopeptidases , Relação Estrutura-Atividade , Triazinas/farmacologia
19.
ACS Chem Neurosci ; 7(7): 972-83, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27100049

RESUMO

Modulators of the serotonin 5-HT6 receptor (5-HT6R) offer a promising strategy for the treatment of the cognitive deficits that are associated with dementia and Alzheimer's disease. Herein, we report the design, synthesis, and characterization of a novel class of 5-HT6R antagonists that is based on the 1H-pyrrolo[3,2-c]quinoline core. The most active compounds exhibited comparable binding affinity to the reference compound, SB-742457, and markedly improved selectivity. Lead optimization led to the identification of (S)-1-[(3-chlorophenyl)sulfonyl]-4-(pyrrolidine-3-yl-amino)-1H-pyrrolo[3,2-c]quinoline (14) (Ki = 3 nM and Kb = 0.41 nM). Pharmacological characterization of the 5-HT6R's constitutive activity at Gs signaling revealed that 14 behaved as a neutral antagonist, while SB-742457 was classified as an inverse agonist. Both compounds 14 and SB-742457 reversed phencyclidine-induced memory deficits and displayed distinct procognitive properties in cognitively unimpaired animals (3 mg/kg) in NOR tasks. Compounds 14 and SB-742457 were also active in the Vogel test, yet the anxiolytic effect of 14 was 2-fold higher (MED = 3 mg/kg). Moreover, 14 produced, in a 3-fold higher dose (MED = 10 mg/kg), antidepressant-like effects that were similar to those produced by SB-742457 (MED = 3 mg/kg). Together, these data suggest that the 4-(pyrrolidine-3-yl-amino)-1H-pyrrolo[3,2-c]quinoline scaffold is an attractive molecular framework for the development of procognitive agents. The results are promising enough to warrant further detailed mechanistic studies on the therapeutic potential of 5-HT6R antagonists and inverse agonists for the treatment of cognitive decline and depression/anxiety symptoms that are comorbidities of Alzheimer's disease.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Pirróis/uso terapêutico , Quinolinas/uso terapêutico , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/complicações , Animais , Células CHO , Transtornos Cognitivos/etiologia , Cricetulus , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Masculino , Neuroblastoma/patologia , Fenciclidina/toxicidade , Pirróis/síntese química , Pirróis/química , Quinolinas/síntese química , Quinolinas/química , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Serotonina/biossíntese , Receptores de Serotonina/química , Antagonistas da Serotonina/química , Sulfonas/química , Sulfonas/uso terapêutico
20.
Eur J Med Chem ; 112: 258-269, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26900658

RESUMO

A series of novel arylpiperazine 5-(4-fluorophenyl)-5-methylhydantoins with 2-hydroxypropyl linker (2-15) was synthesized and evaluated on their affinity towards serotonin 5-HT7 receptor (5-HT7R) in comparison to other closely related GPCRs: serotonin 5-HT1A, and dopamine D2 receptors. The functional activity studied through the measurement of 5-HT7R-mediated cyclic AMP production in Human Embryonic Kidney 293 cells (HEK293) stably expressing human 5-HT7 proved their antagonistic properties. The lead structure was also examined in the preliminary metabolic stability study using human liver microsomes (HMLs). The process of selection of candidates for synthesis was supported by a special molecular modeling workflow including combinatorial library generation, docking, and machine learning-based assessment. Additionally, in silico predictions of selectivity over 5-HT1AR and D2R, as well as functional activity were carried out. The newly synthesized compounds were proved to possess a potent affinity for 5-HT7R, similar to that of the lead structure of 5-(4-fluorophenyl)-3-(3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-hydroxypropyl)-5-methylimidazolidine-2,4-dione (1). For several derivatives, significant selectivity both over 5-HT1AR and D2R was found.


Assuntos
Hidantoínas/química , Hidantoínas/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacologia , Adulto , AMP Cíclico/metabolismo , Desenho de Fármacos , Feminino , Células HEK293 , Humanos , Hidantoínas/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Piperazinas/metabolismo , Antagonistas da Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA